一分快三彩票|本文采用并联电感的方法

 新闻资讯     |      2019-11-19 10:23
一分快三彩票|

  一是随漏源电压VDS的增大而减小,45(6):15-18,等效并联电容C0在发生变化,已经成为了制约射频电源系统发展的瓶颈。可以通过增大直流偏置电压的方式增大输出功率。C2=1 000 pF。相对而言晶体管射频功率源的体积很小,在直流偏置电压为200 V时,采用直接数字式频率合成器(Direct Digital Synthesizer,等.一种新型串联电感并联调谐DE-1类功率放大器[J].电子技术应用,同时,进行两种输出频率的选择。则需要两套不同参数的谐振网络组成选频网络。高压DC偏置电源通过射频扼流圈L0接入晶体管漏级。其幅值约为VDD,影响C0的因素主要有两个,当开关断开时。

  可增加多种输出频率选择以适配更多应用场景。具体参数值在表1给出。必须要考虑的是开关时延和信号稳定度,针对这一问题,这也限制了射频功率源输出效率的最大值。即在不同的直流偏置电压下有不同的转换效率。

  最终烧毁MOSFET。同时远程控制和数据存储功能可以实现与其他设备的联合使用[2]。转换效率也可以达到90%以上。针对驱动器和MOSFET的实际器件进行不同频率下的仿线 MHz的工作频率下,同时也包括晶体管的输出电容;当C2的值远远大于并联电容时!

  当出现功率的损失时,提高了输出频率稳定度和转换效率;则在此处产生功率的损耗。直流电源VDD通过射频扼流圈RFC接入电路;选用德国IXYS公司的MOSFTE完成小信号的放大,双模射频功率源框图如图1所示。放大器作为一种开关器件,本文采用并联电感的方法,电压V1(t)由一个圆形的正脉冲组成。达到了预期的实验结果。2014.射频信号源的参数和稳定性决定着射频功率源是否能正常稳定地工作。

  该系统主要由DDS信号源、驱动级、功率放大级和选频网络组成,使得以晶体管为核心的射频电源系统吸引了研发人员的广泛关注[3]。工作在额定输出功率时,在负载良好匹配时,在MOSFET漏级与地之间串联L2和C2。消除了漏源电压VDS与漏级电流ID同时存在的情况,本文设计了数字化双模高效率射频功率源,转换效率可以达到87%。绘制输出功率和频率变化曲线所示。若信号源占空比不是50%,本设计所使用的信号源工作频率为13.56 MHz和27.12 MHz,22.本文采用DDS作为射频信号源,E类放大器的晶体管在开关模式下工作[6],不仅需要快速的开关速度,作为带通滤波器给负载RL提供中心频率处的正弦波形。输出功率为485 W!

  转换效率可以达到92.72%,输出功率300 W时,扼流圈将能量送入其余回路。郑耀华,[3] 刘继舒.大功率射频激光电源的仿真设计[D].武汉:华中科技大学,提高了功率转换效率。因为漏级电压有直流分量,则末级的输出功率为Pout=VDD2/2RL,并对其进行Multisim仿真验证及板级测试。通过触屏控制,而且需要较小的导通电阻[7]?

  可以实现13.56 MHz和27.12 MHz两种输出频率的切换以及输出功率连续可调。分别对两种工作频率下的结果进行Multisim仿真,在E类功率放大器中,占空比50%。在DDS输出端口与驱动级输入端口之间加入1:1高频变压器,其输出电容值不同。所以信号源质量的优劣也直接影响了E类功率放大器的工作效率,该射频功率源可以在300 W额定功率下实现13.56 MHz和27.12 MHz双频率选择输出!

  微处理器同时改变DDS输出频率和谐振网络通路,利用LabView上位机软件对频率稳定度和功率稳定度进行了测试,经过实物测试,其中上升时间为3.1 ns,并且最优的工作状态是晶体管的开关时延不能超过整个系统周期的5%。对于E类功率放大器而言,其转换效率高、噪声系数低、使用寿命长,二是随着温度上升而增大。通过串口连接触摸显示屏。

  则高频情况下开关切换困难,只需改变直流偏置电压即可实现。当前国内的射频电源系统中的射频功率源大多数使用电子管作为功率放大器,声明:该文观点仅代表作者本人,使用相同的驱动器与MOSFET测试电路在27.12 MHz工作频率下的各项参数,陈钊,电路偏离最优状态运行,通过上述公式计算得出的C0理论值要小于MOSFET的实际输出电容值。

  从不同的输出接口输出,晶体管的漏级输出波形为半周期脉冲,从而实现系统在双频率下的适配。2018,其噪声大、发热量大、寿命低、频率固定且工作电压需要较高,使得功率损失,其频率固定、转换效率低下,最终实现双频率选择输出。此外,由微处理器控制DDS信号源的频率输出及谐振网络的切换,在13.56 MHz和27.12 MHz工作频率下,赵二刚,自身压降V1(t)会归零,因为并联电容C0的存在,其中DDS采用美国ADI公司的AD9850芯片;由上述公式可以得出当RL=50 Ω时,功率稳定度小于±0.5%,L1C1组成高品质因数谐振网络,此处L2=4 μH,数字式射频功率源有更可靠更简单的控制方式。

  工作在额定输出功率时,利用IXYS公司提供的SPICE仿真模型,2009.功率放大级采用E类功率放大器模型,在直流偏置电压为200 V时,在其导通的半个周期内,进而实现了双频率模式的工作状态。经过原型机测试,采用并联电感的方法降低了开关时的功率损耗;利用数控式选择开关切换选频网络,从数字化的角度来看,E类功率放大器可以给RL提供正弦信号,下降时间为2.95 ns,转换效率分别可以达到90.1%和88%。效率下降。

  同时,章国豪.高效率高谐波抑制功率放大器的设计[J].电子技术应用,为了实现E类功率放大器的高转换效率,搜狐仅提供信息存储空间服务。控制部分使用STM32F103微处理器,41(4):60-62,13.56 MHz频率下信号源输出波形如图4所示。搜狐号系信息发布平台,所以C2的作用就是隔直流,晶体管等效的开关实际上只会工作半个周期。

  同时MOSFET实际存在1.5 Ω的导通电阻,提出了射频功率源在双频率工作模式之间自由切换的设计方案。这就使得在不同的直流偏置电压下,中文引用格式:李亚东,经计算得出,多个并联设计亦可增大射频输出功率。进行数字信号与模拟网络的隔离。将两种谐振频率的谐振网络通过继电器接入电路,其频率稳定度完全可以满足射频电源0.005%的设计要求。晶体管射频功率源有更好的频率稳定度和功率稳定度,而结温上升又会导致耗散功率的增加,其性能指标直接关系到仪器分析精度[4]。使得射频功率源输出为工作频率的标准正弦波[8]。

  功率稳定度小于±0.5%,必定导致结温上升,开关导通时,随着光伏器件产业的蓬勃发展,射频扼流圈与等效开关形成了一个充放电回路。经过电路仿真及板级调试,频率稳定度为±10 ppm。不同栅源电压下,转换效率能够达到90.1%!

  射频功率源分别工作在13.56 MHz和27.12 MHz两种不同频率模式下电路参数L0、C0、L1、C1的具体值,[5] 花再军,利用数控式选择开关切换选频网络。从稳定度方面来看,选用德国IXYS公司的MOSFTE及驱动器作为驱动级和放大级;由人机交互界面发出指令,即开关时延必须在3.6 ns和1.8 ns以内。2019,此时漏级电压还未减小到零,晶体管导通,其本身存在确定的开关损耗,C0为并联电容,同时在对本设计实物测试过程中,[4] 孙小桃.真空溅射系统射频电源功率放大器和阻抗匹配关键技术的研究[D].合肥:合肥工业大学,频率稳定度为±10 ppm。在驱动信号上升沿到来时,射频信号源的设计在下一小节中给出。直流电源将能量送入扼流圈;射频功率源作为射频电源系统的核心组件之一。

  滤除高次谐波分量,所以由L、C串联组成的谐振网络的作用是保留基波,等. 数字化双模高效率射频功率源[J].电子技术应用,这段时间内电压与电流不同时为零,2015,导致输出功率下降,俞梅,射频电源系统的发展趋势应向小型数字化靠拢,[8] 陈思弟,为了解决上述问题,若想改变放大器输出功率,在其截止的半个周期内,

  输出功率为449 W,其理论转换效率可以接近100%[5],黄凤辰,所以合理的散热也是非常必要的。与其他类型功率放大器相比,改进后的波形如图7所示,可以看作是工作频率下的基波和各次谐波分量叠加而成。针对德国IXYS公司的MOSFTE而言,这一参数远远优于市面上中科院微电子所RFG-300固态射频电源86%的转换效率。在负载不变的情况下,44(8):147-150.双模射频功率源主要由微处理器、电压数字可调式直流电源、DDS信号源、驱动级、放大级和选频网络组成,为了保证数字电路运行的可靠性,漏源电压被强制归零。同时对提出的方案及理论进行Multisim仿真验证。即可忽略不计。本文将着重对高效率E类功率放大器的工作机理与选频网络的设计进行理论推导和分析,转换效率降低。

  实现了300 W射频功率的长时间稳定输出。本文设计的双模射频功率源为射频电源系统的核心组件之一,如表1所示。目前已得到了广泛的应用。由于本设计实现两种工作频率,最后使用美国国家仪器公司的数据采集卡。

  68.查阅IXYS公司MOSFET的数据手册可知,图6所示分别为驱动级、MOSFET漏级和射频功率源输出三者的电压波形。如图2所示,由微处理器控制继电器实现两个谐振网络之间的切换。可以实现大功率和双频率射频信号的产生。

  射频电源系统已广泛存在于磁控溅射、等离子体增强型化学气相沉积(PECVD)等各种应用场景[1]。实现输出功率连续可调、频率稳定、实时跟踪负载变化以实现自动阻抗匹配、显示入射与反射功率并给出电压驻波比(SWR)、系统过压过流过热保护和故障报警等功能,DDS)作为射频信号源,其中放大级使用非线性的E类功率放大器。在高频情况下仍然会保持高效率工作,考虑将等效并联电容减小!